Semantics and Graphics in Product Life Cycle Management (PLM)

Bringing Virtual Engineering to the Real World

Carlos Toro, Aitor Moreno Álvaro Segura, Iñigo Barandiaran, Jorge Posada

Roadmap

VICOM T

PLM/PLC Vision PLM/PLC Vision Integration Simulation Models

VICOM

Virtual Engineering (VE)

"The goal for virtual engineering is **for the engineer** to better focus on **solving the problems** at hand, without spending undue amounts of time gathering information, modeling the information, and then analyzing it. **Virtual engineering is a user-centered process** that provides a collaborative framework to integrate all of the **design** models, **simulation** results, test data, and other **decision-support tools** in a readily accessible environment."

C. Q. Jian, **D. McCorkle**, M. A. Lorra, K. M. Bryden, "**Applications of Virtual Engineering in Combustion Equipment Development and Engineering**", 2006 ASME International Mechanical Engineering Congress and Expo, IMECE2006–14362, Chicago, November 2006.

Virtual Engineering Applications (VEA) and Virtual Engineering Tools (VET) should fit into the environment

Semantics

- Semantics is the area of knowledge that studies the meaning of things. The word comes originally from the Greek term *sēmantikos* that means "significant".
- The word semantic in its modern form is considered to have first appeared in French as sémantique in Michel Bréal's 1897 book, "Essai de sémantique".
- According to Feigenbaum "Knowledge Engineering (KE) is an engineering discipline that involves integrating knowledge into computer systems in order to solve complex problems normally requiring a high level of human expertise".

Feigenbaum, E., and P. McCorduck. (1983). The Fifth Generation. Reading, MA: Addison-Wesley.

Introduction

Some advantages of using Semantics in VETs

- Improved information and knowledge management
- Enhancements in the search, knowledge and information sharing
- Use of the intrinsic knowledge embedded in the elements being described
- Empowerment of the user knowledge and embedment of such knowledge in a structured and explicit conceptualization.

Introduction – Product Life Cycle Management (PLM)

CIMdata¹ defines PLM as:

- A strategic business approach that applies a consistent set of business solutions that support the collaborative creation, management, dissemination, and use of product definition information
- Supporting the extended enterprise (customers, design and supply partners, etc.)
- Spanning from concept to end of life of a product or plant
- Integrating people, processes, business systems, and information

VICOM

Tech

Image taken from Wikipedia: <u>http://en.wikipedia.org/wiki/Product_lifecycle_management</u>

How are **Semantics and Graphics** currently used in each step of the **product life cycle**?

How have our applied research projects improved that usage in some of the PLC steps?

Definition

Tech

DEFINITION

Ű.

1

- Evaluation of the needs and basic operations of new products
- Output: Characteristics to be fulfilled and initial sketches

Semantic Tools

- Word Processor, email
- Documentation management
- Glosary and Terminology

Graphics Tools

- Planning Tools
- Functional Diagrams
- Desingn methodologies
- Traditional sketching and 2D drawings

R&D Projects

- WIDE <u>http://www.ist-wide.info/</u>
- AIT VEPOP: <u>ait-vepop.oulu.fi</u>

Tech

DESIGN

ĥ.

l.

- Conceptualization of the product
 - functional point of view
- How to materialize the prototype and to evaluate it
- Output: Functional Prototype

Semantic Tools

- Technological Development: LOW
- Design methodologies: TRIZ, Taguchi, etc

Graphics Tools

- Technological Development: **HIGH**
- CAD/CAM Tools are widely used
 - 3D models
 - Schematics

R&D Projects

- IMPROVE
- Aim @ Shape: <u>www.aimatshape.net</u>
- SMART SKETCHES

OM Tech

Introduction

- Improve the design review process within the architecture and automotive industries
- Using of augmented and virtual technologies. (AR VR)

Motivation

- Automotive industry and Architecture needs improvements in the design review phase
- Designers collaboration within a virtual scene and work on the same virtual 3D object
- Technologies combination to allow users, through innovative interaction techniques:
 - annotate objects,
 - create or modify geometry,
 - change lighting conditions.

Objectives

- Develop stereoscopic lightweight transparent eyeglasses with OLED-based microprojectors.
- Improve tiled large scale displays
- Enhance the realism of the displayed virtual objects, especially in mixed reality scenes
- Improve **user interaction** with advanced displays through new interaction metaphors and **tracking** approaches
- Improve video transmission technology for synchronized stereoscopic viewing with HMDs

IMPROVE (II)

VICOM Tech

Proposed Solution

- Photorealistic visualisation of virtual objects
 - Full HDR Rendering
- Markerless Tracking
 - In-Door Out-Door
- Navigational User Interface
 - User oriented
 - Adapted to the design review tasks
- Components:
 - Head Mounted Displays → Human Computer Interaction
 - Large Screen Displays
 - Video Transmission (Rendering is performed out-the-box)

Product Life Cycle Management Relationship

- Semantics: Medium
 - Knowledge-based implementation of user interaction methods
- Graphics: High
 - High real-time photorealistic rendering, HDR
 - Markerless tracking in-door and out-door

VICOM Tech

Real-time photorealistic visualisation of virtual objects

Low Dynamic Range background and reflection

High Dynamic Range background and reflection

IMPROVE (IV)

VICOM Tech

Marker-Less tracking (OutDoor Scenario)

-Image Acquisition

ans.

Feature points Tracking \triangle

IMPROVE (V)

VICOM Tech

Marker-Less tracking (InDoor Scenario)

Feature Points Tracking

IMPROVE (VI)

Navigation

- The user can navigate by triggering the ring menu through a hold-and-press action.
- This menu automatically appears next to the pointer whenever the command is invoked.
- The user can switch between navigation commands by selecting the appropriate buttons.

Analysis and Design Review

Tech

ANALYSIS

- Calculation of mechanical and electrical elements
- Analysis on physical characteristics
 - material stresses
 - thermal properties

Semantic Tools

- Technological Development: LOW
- Massive used of CAD systems, with a semantic loss in conversion processes

Graphics Tools

- Technological Development: MEDIUM
- Reviewing tools
- CAD tools (reusing same tools)
- Finite elements analysis (numerical)

R&D Projects

- Mirowalk
- Coperion K-Messe: http://a4www.igd.fraunhofer.de/projects/48/
- VISICADE <u>www.visicade.de</u>

MIROWALK

Advanced Semantic Techniques for Interactive 3D Navigation in Large CAD Model Visualization

Institut Graphische Datenverarbeitung

MIROWALK (I)

VICOM Tech

Introduction

Large Model Viewer for Design Review and Analysis that uses Semantic oriented tools

Motivation

- Design Review during avoids costly corrections during the construction phase.
- Natural navigation and perception in a VR environment eases the work of the designer in the analysis stage.

Objectives

- Explore the use of semantics in the LMV problem
- Involve the user characteristics to produce a better visualization experience in standard computers (no specialized hardware is required).

MIROWALK (II)

VICOM Tech

Proposed Solution

- In order to visualize large CAD models, classical CG techniques can be used:
 - Culling techniques (Drop, Occlusion, Visibility), Levels of Detail (LOD) and hardware acceleration.
 - Even using traditional CG techniques, some models cannot be handled by a normal PC.
 - The semantic information embedded in a CAD model is hardly used.
 - Different users have different profiles and knowledge (manager, engineer...)
 - Different models have different structures (Plant, Aircraft, Steel Detailing, Boats)
 - The elements of a CAD-drawing have meanings (valve, pipe, wall, bolt, profile, joint...)

Product Life Cycle Management Relationship

- Semantics: Medium
 - Semantic loss is lessened, user intentions and prior knowledge is used to enhance traditional CG techniques.
- Graphics: Medium
 - Different CG techniques were implemented, the VRML export fro two different well known CAD programs was developed as part of the presented approach.

MIROWALK (III)

VICOM Tech

- We modeled an ontology following the STEP (ISO 10303-AP227) protocol for plant space configuration
- We modeled the user and needs and as a result we produce a VR adapted model

MIROWALK (IV)

VICOM Tech

Example: pipe system of a plant, user is an engineer

- The information was used to automatically replace the valves with simple 3D symbols
- Symbols are faster to render
- Other techniques are also controlled by semantic decision:
 - Selective LOD on a per element basis
 - Removal of elements
 - Selective rendering-complexity on a per element basis

MIROWALK (V)

VICOM Tech

- Using these simple techniques together with semantics we get quite impressive results:
- Could not be visualized on a normal desktop PC
- Complete model can be visualized using MiroWalk at interactive frame rates on an of-the-shelf desktop PC
- Export to VRML took only 5 minutes

Production Planning

Tech

PRODUCTION PLANNING

- Design is adapted to the facilities of the producer
 - Inside the factory?
 - Buy parts externally
 - Desired day production
 - New plant?

Semantic Tools

- Technological Development: LOW
- Production Planning Tools
- Cost Analysis Tools

Graphics Tools

- Technological Development: MEDIUM
- Walkthrough visualizers
- 2D Diagrams and workflows

R&D Projects

Pabadis: <u>www.pabadis.org</u>

Manufacturing

Tech

MANUFACTURING

Ű.

- Make of the product in the amounts needed
- Calculate materials needed and expenditures
- Store the manufactured pieces

Semantic Tools

Technological Development: VERY LOW

Graphics Tools

- Technological Development: MEDIUM
- CAM Tools
- Economical Analysis (Diagrams)
- R&D Projects
 - SIMUMEK

Tech

OPERATION

li.

- Products are on market
- Review Design, Productivity and market analysis
 - Selling and Competence awareness
- Final user support
 - Manuals, SW, ...

Semantic Tools

Technological Development: VERY LOW

Graphics Tools

- Technological Development: MEDIUM
- Interactive tools
 - virtual manuals
 - Simulation and training tools
- 2D maps to visualize selling markets, stocks, and relevant information

R&D Projects

- VAR-Trainer
- eWindTech

Tech

VAR-TRAINER

Versatile Augmented Reality Simulator for Training in the Safe Use of Construction Machinery

VICOM

VAR-TRAINER (I)

VICOM

Tech

Introduction

- Construction sector is a high risk activity
- Every year, a lot of industrial accidents caused by non-experienced people or by dangerous situations

Motivation

- Training: user oriented
- High quality graphics to enhance realism (immersive)
- Construction machinery simulation
 - Wheeled vehicles: Excavator, Dumper
 - Elevators: Lift (people), Platform (goods)

Objectives

- Training people safely
 - Mobile platform with real machine cabins and HMD.
- Train risky situations virtually: Exercise edition, train and evaluation

VAR-TRAINER (II)

VICOM

Tech

Proposed Solution

- Mix of Virtual Reality and Augmented Reality
 - Using an stereo HMD (Head Mounted Display), immersive
 - Chroma-key technique
 - User Tracking (IR Marker on the head)
- Training Simulation
 - Using a mobile platform + real cabins and controls
 - PC-Based using standard game pads

VR elements

- Excavation Simulation
- Atmospheric effects Simulation

Product Life Cycle Management Relationship

- Semantics: Low
- Graphics: High
- Notes:
 - User is taken into account (it is essential)
 - Different roles: manager, trainee, trainer, designer...
 - Usability and ergonomic issues

VAR-TRAINER (III)

VICOM Tech

Mobile Platform Version

PC-Based Version

VAR-TRAINER (IV)

VICOM Tech

Construction Machinery

Excavator

Dumper

Lift

Platform

VAR-TRAINER (V)

VICOM Tech

A simplified algorithm for real-time material removal

VAR-TRAINER (VI)

VICOM Tech

Chroma-key based Augmented Reality solution

See-Through HMD prototype with 2 cameras and an IR marker for tracking

VAR-TRAINER (VII)

VICOM Tech

Atmospheric effects simulation (clouds, fog, dawn, rain,...)

Foundation Stiftung

Tech

Maintenance

ĥ.

- Preventive maintenance
- Replacement parts
- Warranty management

Semantic Tools

- Technological Development: VERY LOW
- DB: Factory Components
- DB: Clients and warranty life

Graphics Tools

- Technological Development: LOW
- 2D maps (client localization)
- 2D animations (howto's)

R&D Projects

- SEMTEK
- Arvika: <u>www.arvika.de</u>
- S-TEN: <u>www.s-ten.eu</u>

SEMTEK

Semantic Based Maintenance using mobile devices and Augmented Reality

VICOM

SEMTEK (I)

DM Tec

Introduction

- Mobile Augmented reality steered by semantics to support Maintenance Tasks
- The application of agent theory is a key factor in this project.
- Conventional software systems are designed for static worlds from which a perfect knowledge has been already acquired.
- SEMTEK, however, deals with dynamic and uncertain contexts where the computational system has only a local vision of the world and has limited resources.

Motivation

- As test case we chose the Industrial Maintenance scenario and we mixed traditional VR-AR techniques with semantic technologies (ontologies-SOEKS) embedded in portable devices (UMPC, PDA).
- The use of novel techniques like the Set Of Experience Knowledge Structure (SOEKS) allowed us to model and embed user experience in the system

Objectives

- To enhance a maintenance task with the aid of VR-AR portable systems
- To use a Semantic approach to support the Maintainer (user) experience

VICOM

Tech

SEMTEK (II)

Proposed Solution

- We propose an architecture called UDKE (User, Device, Knowledge and Experience).
- UDKE provides a possible conceptual model of a maintenance system that combines knowledge, user experience and AR techniques

VICOM

Tech

SEMTEK (III)

Product Life Cycle Management Relationship

- Semantics: Low
- Graphics: Medium
- Notes:
 - User is taken into account (it is essential)
 - Different roles: manager, trainee, trainer, designer...
 - Usability and ergonomic issues

SEMTEK (IV)

Recycling

Tech

RECYCLING

Ű.

- Product end of life
- Recycle vs Dispose
- Planning
 - Where, How, Who...

Semantic Tools

- Technological Development: VERY LOW
- Databases: Components, state

Graphics Tools

- Technological Development: LOW
- Geolocalization of dangerous disposes parts (nuclear parts) for monitorization
- 2D statistical diagrams

R&D Projects

- VEGA
- EXPIDE (<u>www.biba.uni-bremen.de/projects/Expide</u>)

Conclusions

- Virtual Engineering tools benefit from advanced graphics coupled with semantic technologies:
 - Engineering data is not just geometry and numbers
 - Meaning, context and user characteristics needed
- Semantics can provide knowledge integrity throughout the Product Life Cycle.
- Graphics especially useful in design, review and testing:
 - Virtual models before any real production

VICOM

Conclusions

- Semantic technology is in an early stage in several stages of the PLC
 - An opportunity for research and improvement
- Developments and prototypes in applied research projects but little actual use in the industry
- Semantics and Graphics can contribute as separate elements but a good integration of both is what brings the strongest value

VICOM

VICOM Tech

Thank you

Jorge Posada: jposada@vicomtech.org

VICOMTech Association Paseo Mikeletegi 57, bajo 20.009 Donostia - San Sebastián (Guipúzcoa) SPAIN

Tel: **+34 943 30 92 30** Fax: **+34 943 30 93 93**

http://www.vicomtech.org

